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Abstract —In this paper, the classical problem of interacting
E-plane step discontinuities is reconsidered. New, frequency-
independent equivalent circuits are derived by explicitly consid-

ering the edge condition in the rigorous Ritz-Galerkin varia-

tional approach. A dramatic reduction of the numerical effort
has also been achieved; in fact, in no case were more than two

basis functions needed. The theoretical results have been com-

pared with those reported in [11 as well as with experimental
tests, always with excellent agreement. The very high accuracy,
the reduced numerical effort, and the absence of relative conver-

gence phenomena make this method ideally suited for the full-
wave analysis of interacting discontinuities in efficient CAD
routines for small desk-top computers.

1. INTRODUCTION

AVEGUIDE E-plane step discontinuities still find

\{ many applications in millimetric and in microwave

practice as building blocks for filters, matching networks,

branch line couplers, phase shifters, etc. Although this

subject is often considered a “mature” one, a look at the

technical literature reveak continuing interest. ln fact,

the synthesis of the aforementioned components is often

based on computer optimization routines which require

repeated wide-band analysis of cascaded interacting step

disccmtinuities. In addition, the widespread availability of

desktop computer facilities promotes very efficient codes

capable of performing the synthesis process on such ma-

chines.

ln the present paper the E-plane step discontinuity

prob[em has been reconsidered using the viewpoint of the

wide-band equivalent networks with frequency-indepen-

dent elements given in [2]. The present formulation, how-

ever, is easier to derive while allowing accommodation for

the correct edge singularity of the field.

Some overall remarks on the most widely used tech-

niques are possible when one considers that many analyti-

cal methods used to solve waveguide discontinuity prob-

lems start from the same integral equation [3]. The latter

is obtained by imposing the boundary conditions on the

transverse components of the electromagnetic fields at

the two sides of the discontinuity. To solve the resulting

integral equation, several different possibilities are at

hand. In [1] and [4] it was solved with the application of

the (equivalent static method, which consists in obtaining
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an analogous integral equation for the static case. lE3y

resorting to conformal mapping, static solutions are thtm

available, and by again using the analogy, the solution Ito

the original problem can be found. It should be remarked

that solutions obtained with this method are often fairly

accurate, and an example of this will be given in Table 11.

Unfortunately, the following drawbacks are also present:

● the results are valid only on a limited range of fre-

quencies;
● the equivalent circuit eIements are frequency-depe n-

dent;

● interacting discontinuities are not considered;

● since the method is based on conformal mapping, it

can be applied only to two-dimensional discontinuity

problems not involving dielectrics.

It should be kept in mind that this ingenious, but analyti-

cally cumbersome, method to solve the integral equation

was followed by Schwinger in order to overcome the lack

of computing facilities at the time. Nowadays, with the

wide diffusion of such resources, techniques based on the

moment method have became increasingly popular. In

particular, if we expand the unknown in terms of norm~al

modes and use the Galerkin method, the mode-matching

formulation is recovered [3]. However, the apparent sim-

plicity of this method conceals certain difficulties. In fact,

in order to obtain accurate solutions, the number of terms

used to express the unknown must be quite high. More-

over this number should be related to the number of

terms retained when truncating the Green’s function, the

relationship being given by the geometrical ratio of the

discontinuity [5]. In conclusion the main disadvantages of

using mode-matching techniques are:

● the impossibility of deriving an equivalent circuit;

● the inversion of a matrix of relatively large dimen-

sion;

● the relative convergence phenomenon.

The method presented here combines the simplicity of

the mode-matching formulation with the accuracy of the

equivalent static method, making use of the framework of

the variational approach. The expanding functions, holw-

ever, are selected so as to satisfy the static edge condi-

tions and no phenomenon of relative convergence exists;
neither is any restriction arising from the geometrical

parameters of the structure present.

Taking advantage of previous works [2], it is possible to

draw simple and accurate wide-band network models not
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Fig. 1. Geometry of the E-plane step.

only for the single discontinuity, but also for cascaded

strongly interacting discontinuities. Since even in interact-

ing discontinuities only the modes above cutoff or just

below cutoff, but still “tunneling” to the next discontinu-

ity, i.e., the “accessible” modes, produce the interaction,

it seems natural to use a scattering matrix description of

just the accessible modes. A variational expression for the

scattering matrix has therefore been derived.

II. APPROXIMATE THEORY FOR THE lSOLATED STEP

DISCONTINUITY IN MONOMODE WAVEGUIDE

The geometry of the step is shown in Fig. 1 in longitu-

dinal section. The fundamental TEIO mode only is propa-

gating in both waveguides with the same propagation

constant @. The admittance of the fundamental TE mode,

Ye=; (1)

is the same in both waveguides. However, in order to

ensure continuity of the dc voltage at the step, the charac-

teristic admittance of the transmission line representing

the larger guide is effectively set equal to

Y;= SYo

where s = d/b <1 is the step ratio. This change of admitt-

ance level can be modeled by means of an ideal trans-

former of ratio 1: b, while retaining unit admittance at

both ports. It is, moreover, convenient to normalize YO to

imity and to introduce an “effective” frequency variable

for the problem, defined as

such that u = O at cutoff of the fundamental mode in the

larger guide and u = 1 at that of the first higher order

mode (LSE II). It is physically obvious that the energy

storage from higher order modes which takes place mainly

in the larger waveguide is mainly capacitive and that in

view of the transverse nature of the discontinuity, it can

be represented by a shunt element.

Consequently, the equivalent circuit of Fig. 2 is in

principle an accurate description of the discontinuity.

Clearly, the capacitance a is still a function of the fre-

quency u, as well as of the step ratio.

3Y.
v

V:v’

Fig. 2. Equivalent circuit of the step.

From [1] we derive the following approximations for a:

e
a=21n —,

4s
s <<1: large step (2a)

(1-s)2 In 2
—

2s l–s’
,s= 1: small step. (2b)

More accurate expressions for a require a rigorous field

solution, such as will be provided in the following. From

the equivalent circuit of Fig. 2, elementary network analy-

sis yields the two-port scdtering matrix of the step with

elements

1 –s – jaus
Sll =

I+s+jaus

I–,s+jaus
S22 = –

l+s+jaus

26
S12 =

l+s+jaus”

(3a)

(3b)

(3C)

It is apparent from (3a)-(3c) that (I SIII) = (1S221). More-

over, when the effect of higher order modes is neglected

(a= O), the well-known approximation for a small step is

recovered, namely

1–s
Sll=—=

1+s
– s,’. (4)

III. RIGOROUS THEORY OF THE ASYMMETRIC

E-PLANE STEP

With reference to Fig. 1, a TEIO mode incident on the

discontinuity excites higher order LSE~~ modes, which

can be derived in each region from an x-directed mag-

netic vector potential of the type

IIk = sinv ~ a~q~(y)e-y”’,
a n= O,l,

The uniforni x dependence does not enter the problem

and can be factored out. EY and HX provide a pair of

fields transverse to the discontinuity that can be derived

from the above potential [6].
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Within anarbitrary constant, the y dgpendenceof the

fields is as follows:

r ntry
L(Y)= ; COST

where

En = 2, n>O

(5a)

(5b)

1

... I s I ●..

Fig. 3. Generalized scattering matrix.

en=l, n=() equation for the electric field E = EY of the discontinuit~c

corresponding to the propagation constants

Normalizing all modal admittances to that of the funda-

mental mode, we have

sYo=Y~=l

in both guides and, for n >0,

Yn=~ in guide d
Y.

Y:=E in guide b.
Y:

The continuity of the transverse field EY, HX at z = O is

expressed as

It is noted that p (n= O,. “ . , p – 1) modes are considered

as pclssibly incident and “accessible” in guide d, and q in

guide b. The remaining modes are only present as re-
flected waves. Hence, by orthogonality, we have from (7)

B.=(-E,, qn)-An

A;= O, n>q. (9)

p–1 q–1

~ ynAnPn + ~ y;A’nh ‘fE=($’(Y, Y’)E( y’) dy”
~=o n=o

(lo)

where ~ is the integral operator whose kernel is the

Green’s admittance function in the scattering representa-

tion, i.e.,

Y(Y>Y’) = : E %F’n(Y)%(Y’)+ ; ~:oK$n(Y)+n(Y’;l.
n=(l

(11)

In order to derive the (p+ q) X (p + q) scattering matri~

S for the junction, let us furthermore scale and relabel

the incident and reflected voltage waves in the usual

manner, i.e., so that the ports are in sequential order and

the characteristic admittance of each port is unity, as in

Fig. 3, i.e.,

a~+l(or b~~l) =Y~/2A~(or BH), O<n<p–1

It is noted that the above scaling of the admittance at the

ports becomes complex for ports corresponding to an

accessible mode below cutoff. This inconvenience may be

avoided by using the original unscaled quantities and

introducing unit termination only when computing real

“powers.

The scattering matrix S for the junction :hown in Fig. 3

is defined by the linear relationship

b=Sa. (1:3)

By linearity, the elements of the scattering matrix are

SiL = b, , a~=l; aj+k=0.

Introducing the above excitations then in the form (12)

for each port k (1< k < p + q) in the integral equation

(10), one obtains p -t-q integral equations for the }m-

known fields Ek set up at the discontinuity by these

excitations:

q;’”g, = f% , l<k<p+q (14)

where

gk=q k-p? p+l<k<p+q (15)

Hence, by inserting (9) into (8), we obtain the integral and q~ is the corresponding admittance. Hence, Ek can
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be written formally by means of the inverse operator ~-1,

or

By virtue of (9) and (12), however, we can now rewrite

(14) as

= r/f/2(g, , ?- ‘g~)q~/2 – S,k (17)

which is the desired variational expression for the scatter-

ing matrix.

IV. DISCRETIZATION OF THE lNTEGRAL EQUATION

Application of the Galerkin method requires discretiza-

tion of the integral equations (14) by means of an appro-

priate, preferably orthonormal, set of expanding func-

tions. On account of the edge condition r-1/3 on El at

the 9W corner, we choose to employ for this purpose the

Gegenbauer polynomials

with u such that the weighting function W(y) appearing in

the orthogonality integral [7] represents the above edge

condition, namely

[ IYII”-1’2=[’-H21-1’3w(y)= 1– j

Hence v = 1/6 and, furthermore, as dE/dy = O at y = O,

we restrict the parity of the polynomials to be even. The

resulting expansion functions, orthonormal in the interval

O < y < d with respect to the weighting function w, are

therefore

[1f.(Y) =+=cK ; , m=(), l,... ,N–1 (18)

the normalization factor N,. being given in Appendix I.

We can now expand the unknown fields E~ as a finite

series of the ~m, with unknown coefficients, of the form

N–1

~k(Y) ‘W(Y) ~ &f,.(Y). (19)
~=lJ

The factor W(y) takes care of the edge condition at

y=d.

Let us correspondingly expand the known ~.,+. as a

series of fm, i.e.,

N–1

%(Y) = z ~mnfm(Y) (20)
~=()

with

Pm. =~dfm(y)w(y)pJy)dy = (fro, wq,z) (21)

and

.Y–l

t.(y) = x Qmnfm(y) (22)
m=O

with

QLn=(fm,wn). (23)

The kernel Y( y, y‘) of the integral equation can now be

expressed as

N–1

Y(Y, Y’) = z ‘mkf,.(y)f,(y’) (24)
?-?I. ,L=O

with

As a result of the expansions (19), (20), and (22), the

unknown E~ corresponds to the N-dimensional column

vector h k; the known functions 0., p. correspond to the

vectors P~, Qk, respectively, whose elements are given by

(21) and (~3); Gk corresponds to g~; and the integral

operator Y corresponds to the matrix ~ given element-

wise by (25). The integral equations (74) are now dis-

cretized into the set of matrix equations

which are numerically invertible and lead via (17) to the

desired variational expression for the scattering matrix:

Sik = #2G~ Y- 1“Gkq;/2 – tiik (l <i, k<p+ q).

(27)

This expression needs recomputation at each spot fre-

quency w.

V. FREQUENCY DEPENDENCE

It is stressed that vectors P and Q above are fre-

quency-independent. They are functions only of the step

ratio, s = d/b (O < s < 1). Frequency enters (25) only

through the modal characteristic admittances. In particu-

lar, for u large, the latter tend to their quasi-static limit.

We have, then, in terms of u, for modes below cutoff,

jsu
Yn=J

jsu

m

=—
2

rl>>u. (29)
n n’

1– ~
n

In fact, a better approximation, one valid over the wave-

guide band, is obtained by continuous fraction expansion
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Fig. 4. (a) Frequency-dependent capacitor; (b) lumped frequency-inde-

pendent LC ring; (c) equivalent circuit of the step discontinuity.

of the square root up to second order, i.e.,

2 ju
——

y;:=;:+ 3n2 (30a)

1–;;

(30b)

Consequently, Y;(u) is representable exactly as the fre-

quency-dependent capacitor of Fig. 4(a) or, to a high

degree approximation, by the lumped frequency-indepen-

dent LC ring of Fig. 4(b). Depending on p, q and the
ratio s, it may be quite sufficient to replace all admit-

tances by their quasi-static limit.

If only the fundamental mode is propagating at either

side of the step and the dynamic behavior of the first

higher order mode of the large guide only is retained, we

have then from (25), (29), and Appendix I the following Y

matrix with explicit frequency and step-ratio dependence:

1
Ymk(u, s) = Jl+ s) P&8moi3~o

(31:)

The real part represents the effect of the fundamental

mode at each side of the step, and the purely imaginary

one, that of the higher order modes. Further dynamic

corrections can be introduced as necessary.

VI. FIRST ORDER VARIATIONAL SOLUTION

If we set m = k = O in (25), the latter becomes a scalar

quantity and an analytical result can be recovered from

(27), where we set

q1=q2=l

GI = POO

G2 = Qoo = fiPoo. (32.)

Hence, we obtain from (27)

$1=:-1
00

SP;O
$2=-—1

Yoo

S21=S12=6$-.
00

(33a)

(33b)

(33C)

From (31) we have

Y00 1 +s jaws
_— —

%–2+2
(34)

where a is now a more accurate expansion for the capaci-

tance of the step (see Fig. 2) than that of (2),

a=k[[;+l:uJ
which is a weak function of the step ratio s and frequency

u and where

()/k = 2V3~2 ?

6
36= 1.0849

m 1 .J~,6(n7rs)
%(s)= z ~ 0<s<1.

(n~s)’/3 ‘
(316)

~.~



1284 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 39, NO. 8, AUGUST 1991

TABLE I

MODULES OF THE REFLECTIONCOEFFICIENTFOR Two DIFFERENT
HEIGHTS OF THE STEP (s = 0.2, 0.8) AND Two VALUES

OF FREQUENCY FOR A STANDARD
X-BAND WAVEGUIDE

F=8GHZ

0.2 0.6732 0.6731 0.6731 0.6731

0,8 0.1142 0.1126 0.1126 0.1126

F =12 GHz

s 1 2 3 4

0.2 0.7091 0.7090 0.7090 0.7090
0.8 0.1283 0.1205 0.1204 0.1204

NY represents the numbers of basis functions used to approxi-
mate the field on the aperture.

VII. NUMERICAL RESULTS

An extensive numerical analysis has been carried out in

order to ascertain some characteristics of the method

presented in the previous sections. Salient features useful

as guidelines and tests for numerical implementation are

reported in this section. ln particular, the cases of the

single discontinuity, of two coupled discontinuities, and

an example of a cascade of discontinuities are examined.

The way in which the frequency dependence extraction

and the quasi-static approximation affect the results has

also been investigated.

The first case considered is that of the single disconti-

nuity shown in Fig. 1. In this case, in order to investigate

the convergence properties of the method, formula (27)

has been used without extracting the frequency depen-

dence. The error arising from this formula is due to the

fact that a finite number of basis functions is selected (say

~) and that infinite sums are truncated after M terms.

It should be noted that in the conventional modal-

matching technique, the choice of ~ and ikf is critical

and is related to the geometrical parameters of the struc-

ture, giving rise to the phenomenon of relative conver-

gence, while in this case no such phenomenon occurs. ln

fact, once the value of kf is high enough so that Green’s

function is well approximated and no ill conditioning is

present, no relationship need be maintained between A4

and N and the geometrical parameter.

To investigate the number of terms necessary to obtain

stable results, a high value of h4 has been selected, and

the modulus of the reflection coefficient has been calcu-

lated considering ~ =1,2, 0. “,4 terms. The correspond-

ing results are given in Table I for two different values of

the step ratio and the frequency. It is apparent that two

terms are always sufficient to obtain very good results.

The convergence with respect to the number of terms

retained when approximating the Green’s function has

been successively examined. In Table H, columns 1 and 2

are obtained by using only one basis function to represent

the field (N= 1) and considering respectively only two

TABLE II
MODULUS OF THE REFLECHON COEFFICIENT, RELATIVE TO A

WR90 WAVEGUIDE, FOR DIFFERENT

VALUES OFs AND FREQUENCY

F=8GHZ

N=l N=l N=2 N=2

s M=2 M=1O M=4 M=80 [1]

0.2 0.6720 0.6730 0.6725 0.6731 0.6731
0.4 0.4364 0.4383 0.4377 0.4384 0.4384
0.6 0.2552 0.2565 0.2556 0.2561 0.2561
0.8 0.1124 0.1140 0.1123 0.1126 0.1126

F =10 GHz

N=l N=l N=2 N=2
s M=2 M=1O M=4 M=80 [11

0.2 0.6838 0.6864 0.6851 0.6869 0.6869
0.4 0.4542 0.4596 0.4580 0.4600 0.4600
0.6 0.2666 0.2701 0.2678 0.2694 0.2694
0.8 0.1150 0.1196 0.1150 0.1157 0.1156

F =12 GHz

N=l N=l N=2 N=2
s M=2 M=1O M=4 M=80 [1]

0.2 0.7034 0.7080 0.7055 0.7090 0.7089
0.4 0.4852 0.4948 0.4921 0.4960 0.4959
0.6 0.2854 0.2917 0.2884 0.2915 0.2915
0.8 0.1188 0.1272 0.1191 0.1205 0.1203

N is the number of basis functions used, while M is the
number of terms retained in the sum 25. The last column refers
to the results from [I].

and ten terms (M= 2, 10) of the sum (25). In the same

table, columns 3 and 4 refer to the case of N = 2 when

four and 80 terms are retained for the Green’s function

(M= 4,80). The fast convergence of the sum and, conse-

quently, the slight numerical effort required are evident.

The last column of Table 11 reports the results obtained

by using the expression given in [1, p. 307]. The agree-

ment with the results of the fourth column (N= 2,

M = 80) is almost perfect.

It is now possible to examine the effects of the fre-

quency-dependence extraction described in Section V.

Let us at same time consider the modification of the

solution caused by the introduction of the quasi-static

approximation. Fig. 5 shows the correct result obtained

using two terms (dashed curve) together with the quasi-

static approximation relative to one-term expansion

(N= 1) and considering only one term dynamically (lower
continuous curve). The upper continuous curve is relative

to the simple circuit of Fig. 4(c). It should be noted that

this comparison is done for the worst case, since a step

ratio s = 0.8 is considered; for lower step ratios, the

accuracy increases.

Two types of double interacting discontinuities fre-

quently occur in practiced, namely the thick iris case and

the stub case. From the point of view of numerical analy-

sis, in addition to the previous parameters M and N, the

number of accessible modes (P) should also be consid-

ered. Fig. 6 represents the modulus of the reflection

coefficient relative to an iris of .s= 0.5 and thickness
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Fig. 5. Modulus of the reflection of a single step discontinuity (WR90,

s = 0.8). Effects of quasi-static approximation and of the frequency
dependence extraction. The dashed line is the solution obtained consid-
ering two basis functions; the other two curves refer to only one basis
functio m. The upper one is obtained from the equivalent circuit of Fig.

4(c).
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z
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000 ~
10.00 1100 1200 13,00 14,00 15.00

frequency (GHz)

Fig. 6, Modulus of the reflection coefficient for a thick iris in a WR75
waveguide; s = 0.5 and the thickness of the iris is d = 0.768 mm. The

continuous curve is obtained considering two basis functions and six
“accessible” modes; the dashed one is obtained using the equivalent

circuit.

d = 0.768 mm inside a WR75 waveguide. The curves
reported in this figure are obtained by using N = 2 and 6

accessible modes (P = 6, continuous line). The very good

approximation provided by the circuit of Fig. 4(c) is

evident.

With regard to the stub case, the resonant nature of the

two interacting discontinuities must be properly taken

into account. To this end, it can be advantageous to

consider the resonant cell from directions other than the

propagating one, By doing so, excellent results can be

obtained. Fig. 7 compares the computed (dashed line) and

the measured (continuous line) modulus and phase of the

scattering parameters for the structure in the inset. Only

two basis functions have been used on the two apertures,

and only three accessible modes have been considered.

The excellent agreement between the computed results

and the experimental data is evident.

As a last example, Fig. 8 compares experimental and

calculated data for the three-stub structure shown in the

inset. The latter further confirms how it is possible to

obtain very accurate results with a modest numerical

effort.

VIII. CONCLUSIONS

The problem of the E-plane step in rectangular wave-

guide has been reconsidered. The use of the appropriate

edge condition, combined with a variational expression of

the generalized scattering matrix, has led to a significant

reduction of the numerical effort. In fact, as is evident

also from a comparison with experimental data, inversion

of a matrix of maximum size 2 X 2 is required to obtain

the generalized scattering matrix.

Moreover, when the frequency extraction is used, new

approximate circuits with frequency-independent ele-

ments are derived. The method outlined in the previous

sections is therefore proposed as a valid improvement of

the classical modal-matching routines, as well as of the

equivalent circuits reported in [1].

APPENDIX I

The normalization of the Gegenbauer polynomials is

given in [7, p. 827]:

f::o-tz)0-] ’2 C;(t) C:(t)dt

= 2N#~. . (Al.)

With the choice u = 1/6, the normalization constant AL

appearing in (18) is then

11()‘“=%i+$’1’2‘A’)
Coefficients of the expression (22) are as follows:

Qm. = ~dw$.f. dy

——
~% 4s i-, Cosrl’irst.—

2N. I
C&$( t)dt (A3)

-1 (1–t’)1’3
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Fig. 7. Experimental and computed scattering parameters for the structure in Fig. 7(a), referring to a WR75 loaded with
one E-plane stub. All dimensions are in mm.

where with
Ea=l, n=()

II

1

()

1/2

. 2,
TF —+2m

n>O
~ 1/2

Cm=(–l)m 3
()
2m+; .

and s is the step ratio d/b. The above integral is recog- (2m) !

nized as the real part of the following standard integral

[7, p. 830]: For n = O, the limit of the Bessel function of small argu-

/:;(1-~2r-1’2J”’w)~~ ment is
*im J.(Z) 1

— .

~21-”r(20 + ~) Z+f) Z“ 2“r(~)0”
— (j)w~-”~,+~(~). (A4) Hence for v = 2m + 1/6, we have

~!r(u)
21/3

H)]
1/2

Setting now a = n~s and p = 2m in the above, we obtain QOO=&—

()

3Tr ~ = &NO

zm+l,,(n~s)
r;

Q.Js) = fiCn J
(n@l/’ ‘

n>O (A5)
Qmo= 0, m>O (A6)
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Fig. 8. Experimental and computed scattering parameters for the structure in Fig. 8(a) referring to a WR75 rectangular
waveguide loaded with three E-plane stubs. Alldimensions arein mm.

Returning now to the expression (20), its coefficients, From the expansion of the Bessel function for large

arguments,

/p.. = ‘Wp.fm dy
o

are obtained by setting x = n~ in A4; hence

k+l,dn~)J
Pm. = K

(n7r)’/’

‘Jz)=EcOs(z-H)
it is noted that, for large n, we’ have

(A7) ‘z~+’’’’(nms) = ( - 1)~
r (1

~ (nms)-’i’cos~ ns - ~ .
(n~s)l/’

which are s-independent.
(A8)
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Hence series such as those appearing in (24) converge as
~ – 7/3

APPENDIX II

SECOND-ORDER VARIATIONAL SOLUTION FOR

SINGLE STEP

It is noted that the Gegenbauer polynomial CO repre-

sents exactly the field of the fundamental LSEIO mode.

Consequently in Appendix I, Q~O = O for m >0. This fact

allows the second-order variational solution for the single

step also to be written down without matrix inversion. Let

r-. -. I

[Xol ~llj

be the resulting 2x 2 matrix, and Z be its inverse. Then,

we have

zll=[Yoo– Y&/ Y1l]-l

and,

and

on account of (27),

P;.
sl~= –1

Yoo – Y; / Yll

similarly for the other elements of the two-port

scattering matrix.
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