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E-Plane Steps in Rectangular Waveguide

Tullio Rozzi, Fellow, IEEE, and Mauro Mongiardo

Abstract —In this paper, the classical problem of interacting
E-plane step discontinuities is reconsidered. New, frequency-
independent equivalent circuits are derived by explicitly consid-
ering the edge condition in the rigorous Ritz—-Galerkin varia-
tional approach. A dramatic reduction of the numerical effort
has also been achieved; in fact, in no case were more than two
basis functions needed. The theoretical results have been com-
pared with those reported in [1] as well as with experimental
tests, always with excellent agreement. The very high accuracy,
the reduced numerical effort, and the absence of relative conver-
gence phenomena make this method ideally suited for the full-
wave analysis of interacting discontinuities in efficient CAD
routines for small desk-top computers.

1. INTRODUCTION

AVEGUIDE E-plane step discontinuities still find
“ many applications in millimetric and in microwave
practice as building blocks for filters, matching networks,
branch line couplers, phase shifters, etc. Although this
subject is often considered a “mature” one, a look at the
technical literature reveals continuing interest. In fact,
the synthesis of the aforementioned components is often
based on computer optimization routines which require
repeated wide-band analysis of cascaded interacting step
discontinuities. In addition, the widespread availability of
desktop computer facilities promotes very efficient codes
capable of performing the synthesis process on such ma-
chines.

In the present paper the E-plane step discontinuity
problem has been reconsidered using the viewpoint of the
wide-band equivalent networks with frequency-indepen-
dent elements given in [2]. The present formulation, how-
ever, is easier to derive while allowing accommodation for
the correct edge singularity of the field.

Some overall remarks on the most widely used tech- .

niques are possible when one considers that many analyti-
cal methods used to solve waveguide discontinuity prob-
lems start from the same integral equation [3]. The latter
is obtained by imposing the boundary conditions on the
transverse components of the electromagnetic fields at
the two sides of the discontinuity. To solve the resulting
integral equation, several different possibilities are at
hand. In [1] and [4] it was solved with the application of
the equivalent static method, which consists in obtaining
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an analogous integral equation for the static case. By
resorting to conformal mapping, static solutions are then
available, and by again using the analogy, the solution to
the original problem can be found. It should be remarked
that solutions obtained with this method are often fairly
accurate, and an example of this will be given in Table 11.
Unfortunately, the following drawbacks are also presernt:

¢ the results are valid only on a limited range of fre-
quencies;

* the equivalent circuit elements are frequency-depen-
dent;

* interacting discontinuities are not considered;

* since the method is based on conformal mapping, it
can be applied only to two-dimensional discontinuity
problems not involving dielectrics.

It should be kept in mind that this ingenious, but analiti-
cally cumbersome, method to solve the integral equation
was followed by Schwinger in order to overcome the lack
of computing facilities at the time. Nowadays, with the
wide diffusion of such resources, techniques based on the
moment method have became increasingly popular. In
particular, if we expand the unknown in terms of normal
modes and use the Galerkin method, the mode-matching
formulation is recovered [3]. However, the apparent sim-
plicity of this method conceals certain difficulties. In fact,
in order to obtain accurate solutions, the number of terms
used to express the unknown must be quite high. More-
over this number should be related to the number of
terms retained when truncating the Green’s function, the
relationship being given by the geometrical ratio of the
discontinuity [5]. In conclusion the main disadvantages of
using mode-matching techniques are:

¢ the impossibility of deriving an equivalent circuit;

* the inversion of a matrix of relatively large dimen-
sion;

¢ the relative convergence phenomenon.

The method presented here combines the simplicity of
the mode-matching formulation with the accuracy of the
equivalent static method, making use of the framework of
the variational approach. The expanding functions, how-
ever, are selected so as to satisfy the static edge condi-
tions and no phenomenon of relative convergence exists;
neither is any restriction arising from the geometrical
parameters of the structure present.

Taking advantage of previous works [2], it is possible to
draw simple and accurate wide-band network models not
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Fig. 1. Geometry of the E-plane step.

only for the single discontinuity, but also for cascaded
strongly interacting discontinuities. Since even in interact-
ing discontinuities only the modes above cutoff or just
below cutoff, but still “tunneling” to the next discontinu-
ity, i.e., the “accessible” modes, produce the interaction,
it seems natural to use a scattering matrix description of
just the accessible modes. A variational expression for the
scattering matrix has therefore been derived.

II. ArPROXIMATE THEORY FOR THE ISOLATED STEP
DiscoNnTINUITY IN MoNOMOPE WAVEGUIDE

The geometry of the step is shown in Fig. 1 in longitu-
dinal section. The fundamental TE,, mode only is propa-
gating in both waveguides with the same propagation
constant 8. The admittance of the fundamental TE mode,

weg

Yoz? (1)

is the same in both waveguides. However, in order to
ensure continuity of the dc voltage at the step, the charac-
teristic admittance of the transmission line representing
the larger guide is effectively set equal to

Y = sY,

where s = d /b <1 is the step ratio. This change of admit-
tance level can be modeled by means of an ideal trans-
former of ratio 1:Vs, while retaining unit admittance at
both ports. It is, moreover, convenient to normalize Y, to
tnity and to introduce an “effective” frequency variable
for the problem, defined as

Bb 2b
U= — =
T A ¢
such that u = 0 at cutoff of the fundamental mode in the
larger guide and u =1 at that of the first higher order
mode (LSE,,). It is physically obvious that the energy
storage from higher order modes which takes place mainly
in the larger waveguide is mainly capacitive and that in
view of the transverse nature of the discontinuity, it can
be represented by a shunt element.

Consequently, the equivalent circuit of Fig. 2 is in
principle an accurate description of the discontinuity.
Clearly, the capacitance « is still a function of the fre-
quency u, as well as of the step ratio.
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Fig. 2. Equivalent circuit of the step.

From [1] we derive the following approximations for a:

e
a=2In T s < 1: large step (2a)
5
a-sy, 2 L: small 2b
=— , ~ 1 tep.
Sy T s small step. (2b)

More accurate expressions for « require a rigorous field
solution, such as will be provided in the following. From
the equivalent circuit of Fig. 2, elementary network analy-
sis yields the two-port scattering matrix of the step with
elements

1—s—jaus

= 3
" 1+ s+ jaus (3a)
g 1—s+ jaus 3b
2 1+ s+ jaus (3b)
S 245 3
12_1+s+jaus' (3¢)

It is apparent from (3a)-(3c) that (1S;;) =(|S,,). More-
over, when the effect of higher order modes is neglected
(a = 0), the well-known approximation for a small step is
recovered, namely

(4)

III. Ricorous THEORY OF THE ASYMMETRIC
E-PLANE STEP

With reference to Fig. 1, a TE, mode incident on the
discontinuity excites higher order LSE{, modes, which
can be derived in each region from an x-directed mag-
netic vector potential of the type

Y a,0,(y)e

n=0,1,

. TX
I, = sin —

The uniformi x dependence does not enter the problem
and can be factored out. £, and H, provide a pair of
fields transverse to the discontinuity that can be derived
from the above potential [6].
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Within an arbitrary constant, the y dependence of the
fields is as follows: '

nwTy

ou(9) = = cos (5a)
€, nmy
5.0 =2 cos ™ (s0)
where
€,=2, n>0
€,=1, n=0

corresponding to the propagation constants

ltnry? (w72 [271Y 2
— ] + |~ -] —
EEHEE
] J

[tz w12 [2777
! — —_ + _— — .
" [ b ] [a} A
Normalizing all modal admittances to that of the funda-
mental mode, we have

(6a)

Vo=

1/2

(6b)

sY,=Y;=1
in both guides and, for n >0,
B
= — in guide d

Yr
J

Y, = —l?— in guide b.
Yn

The continuity of the transverse field E,, H, at z =0 is
expressed as

p—1 I
E, = EOAn<Pn+ ZOBn<Dn (7a)
g—1 ®
= L Ay, + ¥ B, (7b)
n=0 n=0
p—1 %
_Hx= Z YnAn‘Pn_ Z leBn¢n (Sa)
n=0 . n=10
q—1 0
(8b)

=- Y Y, 44,+ L VB¢,
n=0 =

n

It is noted that p (n=0,- - -, p —1) modes are considered
as possibly incident and “accessible” in guide d, and g in
guide b. The remaining modes are only present as re-
flected waves. Hence, by orthogonality, we have from (7)

Bn = <Ey7€0n>_ An

A,=0, n=p
B,=(E,,¢,)— A4,
A,=0, n>q. (9

Hence, by inserting (9) into (8), we obtain the integral
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Fig. 3. Generalized scattering matrix.

equation for the electric field E = E,, of the discontinuity:
p—1 qg—1

A d. ’

Y Y, A0, + ) K{A’ndfﬁYE=fo Y(y,y)E(y") dy’
n=0 } n=0

(10)

where Y is the integral operator whose kernel is the
Green’s admittance function in the scattering representa-
tion, i.e.,

1 ®© 1 0
Y(y,5) =3 ;Ox,¢n(Y)<Pn(Y’)+ > EOY,{%(y)%(y’)-

(1
In order to derive the (p + g)X(p + g) scattering matrix
S for the junction, let us furthermore scale and relabel
the incident and reflected voltage waves in the usual
manner, i.e., so that the ports are in sequential order and
the characteristic admittance of each port is unity, as in
Fig. 3, i.e.,

an+1(pr bn-;l) = Y;tl/zAn(Or Bn)’ 0 sn<p -1

1/2 ’
a,41(0r by y) = 1/nl~/p+1An—p+1(0r B:‘l)’

p<n<p+q-1.

(12)
It is noted that the above scaling of the admittance at the
ports becomes complex for ports corresponding to an
accessible mode below cutoff. This inconvenience may be
avoided by using the original unscaled quantities and
introducing unit termination only when computing real

‘powers.

The scattering matrix S for the junction §hown in Fig. 3
is defined by the linear relationship '

b= Sa. (13)
By linearity, the elements of the scattering matrix are
Six=0b,, ar=1; a,,,=0.

Introducing the above excitations then in the form (12)
for each port k (1<k < p-+ g) in the integral equation
(10), one obtains p + g integral equations for the un-
known fields E, set up at the discontinuity by these
excitations:

ni’g, = YE,, 1<k<p+g (14)
where

8k = Pr-1> I<k<p

8 =Yi—p> p+li<k<p+g (15)

and 7, is the corresponding admittance. Hence, E, can
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be written formally by means of the inverse operator YL
or

Y11/2

(16)

By virtue of (9) and (12), however, we can now rewrite
(14) as

Szk = bl = 7711/2<gi’Ek>_ 3lk
=g, Y g ~ (17)

which is the desired variational expression for the scatter-
ing matrix.

0.k

IV. DISCRETIZATION OF THE INTEGRAL EqQuaATION

Application of the Galerkin method requires discretiza-
tion of the integral equations (14) by means of an appro-
priate, preferably orthonormal, set of expanding func-
tions. On account of the edge condition r~/3 on E, at
the 90° corner, we choose to employ for this purpose the
Gegenbauer polynomials

1y
3]
with v such that the weighting function w(y) appearing in

the orthogonality integral {7] represents the above edge
condition, namely

o[ ]

Hence v =1/6 and, furthermore, as dE /dy =0 at y =0,
we restrict the parity of the polynomials to be even. The
resulting expansion functions, orthonormal in the interval
0 < y < d with respect to the weighting function w, are
therefore

fn(y)= ! CVﬂy} m=0,1,--,N—1 (18)

\/_N d

the normalization factor N,, being given in Appendix I.
We can now expand the unknown fields E, as a finite
series of the f, , with unknown coefficients, of the form

N-~-1
Ex(y)=w(y) Z;OAmkfﬁ(Y)- (19)

The factor w(y) takes care of the edge condition at
y=d.

Let us correspondingly expand the known ¢,,4, as a
series of f,,, ie.,

N-—-1
Pu(¥)= 2 Punfru(¥) (20)

m=0
with

Py = [Odfmw)w(y)gon(y)dw<fm,w<on> (21)
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and

N-1

b (}) - Z erzfm(y)

m=40

(22)

with
an= <fm7w¢,n>‘

The kernel Y(y, y’) of the integral equation can now be
expressed as

(23)

N-—1
Y(9,9)= L Yiful3) (¥ (24)
m, k=0
with
1 2 1 2
E Z mnPkn+E Z Y;z,anan (25)
= n=0

As a result of the expansions (19), (20), and (22), the
unknown E, corresponds to the N-dimensional column
vector A,; the known functions ¢,, ¢, correspond to the
vectors P, Q,, respectively, whose clements are given by
(21) and (23); G, corresponds to g;; and the integral
operator Y corresponds to the matrix Y given element-

wise by (25). The integral equations (14) are now dis-
cretized into the set of matrix equations

26 =YX, 1<k<p+q (26)

which are numerically invertible and lead via (17) to the
desired variational expression for the scattering matrix:
Su= 6T Gl 0,

(1<i, k<p+q).

(27)

This expression needs recomputation at each spot fre-
quency .

V. FREQUENCY DEPENDENCE

It is stressed that vectors P and Q above are fre-
quency-independent. They are functions only of the step
ratio, s=d /b (0 <s<1). Frequency enters (25) only
through the modal characteristic admittances. In particu-
lar, for u large, the latter tend to their quasi-static limit.
We have, then, in terms of u, for modes below cutoff,

1 ju ju
Y, =———=—, n>u (28)
n uz n
1___
2
1 Jsu jsu
y;l=; ~—, n=u, (29)

In fact, a better approximation, one valid over the wave-
guide band, is obtained by continuous fraction expansion
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Fig. 4. (a) Frequency-dependent capacitor; (b) lumped frequency-inde-
pendent LC ring; (¢) equivalent circuit of the step discontinuity.

of the square root up to second order, i.e.,

2 ju
Y 3n
e (309
1___
4 n
2 jsu
1 jsu 3 n 1 jsu 2
nT 3, . 3[us]2_§7 3 us\2
4in (n)
(30b)

Consequently, Y, (u) is representable exactly as the fre-
quency-dependent capacitor of Fig. 4(a) or, to a high
degree approximation, by the lumped frequency-indepen-
dent LC ring of Fig. 4(b). Depending on p,q and the
ratio s, it may be quite sufficient to replace all admit-
tances by their quasi-static limit.

If only the fundamental mode is propagating at either
side of the step and the dynamic behavior of the first
higher order mode of the large guide only is retained, we
have then from (25), (29), and Appendix I the following Y
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matrix with explicit frequency and step-ratio dependence:

1
Y,(u,s) = 5(1'*' 5) P 8,mo0r0

2
Ju 3
513 + 3 Qr(8) Qi
1— Zuz

® 1 < 1
+ Z ;an(S)an(S) +s Z _PmnPkn .
n=2 n

n=1

(31)

The real part represents the effect of the fundamental
mode at each side of the step, and the purely imaginary
one, that of the higher order modes. Further dynamic
corrections can be introduced as necessary.

VI. FirsT ORDER VARIATIONAL SOLUTION

If we set m = k =0 in (25), the latter becomes a scalar
quantity and an analytical result can be recovered from
(27), where we set

n=m=1
Gy =Py
G,=0Qw= ‘/Epoo- (32)
Hence, we obtain from (27)
2
00
S =—=-1 334
11 Yoo (33a)
sP2
Sp = = - (33b)
Yoo
PZ
Sy=8,=Vs —=. (33¢)
Yoo
From (31) we have
Y, 1+s jaus
2= (34)

—=—++

P& 2 2
where « is now a more accurate expansion for the capaci-
tance of the step (see Fig. 2) than that of (2),

2

JZ, (s

o=k §+ 33 1/6( 1/3)
1- 2y | (7)

4

+0,(s) + (1)

(35)

which is a weak function of the step ratio s and frequency
u and where

1
k= 21/31’2(3)/36 =1.0849

1 J2, (nws
L ZU.O N,

5 <L

o) = X (36)

n” (nws)
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TABLE 1
MobuLEs oF THE REFLECTION COEFFICIENT FOR Two DIFFERENT
Heicuts oF THE STEP (5 = 0.2, 0.8) AND Two VALUES
OF FREQUENCY FOR A STANDARD
X-BAND WAVEGUIDE

F=8GHz
NY
N 1 2 3 4
0.2 0.6732 0.6731 0.6731 0.6731
0.8 0.1142 0.1126 0.1126 0.1126
F=12GHz
NY
S 1 2 3 4
0.2 0.7091 0.7090 0.7090 0.7090
0.8 0.1283 0.1205 0.1204 0.1204

NY represents the numbers of basis functions used to approxi-
mate the field on the aperture.

VII. NUMERICAL RESuULTS

An extensive numerical analysis has been carried out in
order to ascertain some characteristics of the method
presented in the previous sections. Salient features useful
as guidelines and tests for numerical implementation are
reported in this section. In particular, the cases of the
single discontinuity, of two coupled discontinuities, and
an example of a cascade of discontinuities are examined.
The way in which the frequency dependence extraction
and the quasi-static approximation affect the results has
also been investigated.

The first case considered is that of the single disconti-
nuity shown in Fig. 1. In this case, in order to investigate
the convergence properties of the method, formula (27)
has been used without extracting the frequency depen-
dence. The error arising from this formula is due to the
fact that a finite number of basis functions is selected (say
N) and that infinite sums are truncated after M terms.

It should be noted that in the conventional modal-
matching technique, the choice of N and M is critical
and is related to the geometrical parameters of the struc-
ture, giving rise to the phenomenon of relative conver-
gence, while in this case no such phenomenon occurs. In
fact, once the value of M is high enough so that Green’s
function is well approximated and no ill conditioning is
present, no relationship need be maintained between M
and N and the geometrical parameter.

To investigate the number of terms necessary to obtain
stable results, a high value of M has been selected, and
the modulus of the reflection coefficient has been calcu-
lated considering N =1,2,---,4 terms. The correspond-
ing results are given in Table I for two different values of
the step ratio and the frequency. It is apparent that two
terms are always sufficient to obtain very good results.

The convergence with respect to the number of terms
retained when approximating the Green’s function has
been successively examined. In Table II, columns 1 and 2
are obtained by using only one basis function to represent
the field (N=1) and considering respectively only two
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TABLE II
MobuLus oF THE REFLECTION COEFFICIENT, RELATIVE 1O A
WR90 WAVEGUIDE, FOR DIFFERENT
VALUES OF § AND FREQUENCY

F=8GHz
N=1 N=1 N=2 N=2
S M=2 M=10 M=4 M=80 [l
02 06720 06730 06725 06731 06731
04 04364 04383 04377 04384 04384
06 02552 02565 02556 02561  0.2561
08 01124 01140 01123 01126 01126
F=10GHz
N=1 N=1 N=2 N=2
§  M=2 M=10 M=4 M=80 [1]
02 06838 06864 06851  0.6869  0.6869
04 04542 0459 04580  0.4600  0.4600
06 02666 02701 02678 02694  0.2694
08 01150 0119 01150 01157  0.1156
F=12GHz
N=1 N=1 N=2 N=2
s M=2 M=10 M=4 M=8 [1
02 07034 07080 07055 07090  0.7089
04 04852 04948 04921 04960  0.4959
06 02854 02917 02884 02915  0.2915
08 0118 01272 01191 01205  0.1203

N is the number of basis functions used, while M is the
number of terms retained in the sum 25. The last column refers
to the results from [1).

and ten terms (M =2,10) of the sum (25). In the same
table, columns 3 and 4 refer to the case of N =2 when
four and 80 terms are retained for the Green’s function
(M = 4,80). The fast convergence of the sum and, conse-
quently, the slight numerical effort required are evident.
The last column of Table II reports the results obtained
by using the expression given in [1, p. 307]. The agree-
ment with the results of the fourth column (N =2,
M = 80) is almost perfect.

It is now possible to examine the effects of the fre-
quency-dependence extraction described in Section V.
Let us at same time consider the modification of the
solution caused by the introduction of the quasi-static
approximation. Fig. 5 shows the correct result obtained
using two terms (dashed curve) together with the quasi-
static approximation relative to one-term expansion
(N =1) and considering only one term dynamically (lower
continuous curve). The upper continuous curve is relative
to the simple circuit of Fig. 4(c). It should be noted that
this comparison is done for the worst case, since a step
ratio s=10.8 is considered; for lower step ratios, the
accuracy increases.

Two types of double interacting discontinuities fre-
quently occur in practiced, namely the thick iris case and
the stub case. From the point of view of numerical analy-
sis, in addition to the previous parameters M and N, the
number of accessible modes (P) should also be consid-
ered. Fig. 6 represents the modulus of the reflection
coefficient relative to an iris of s=0.5 and thickness
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Fig. 5. Modulus of the reflection of a single step discontinuity (WR90,
s =0.8). Effects of quasi-static approximation and of the frequency
dependence extraction. The dashed line is the solution obtained consid-
ering two basis functions; the other two curves refer to only one basis
function. The upper one is obtained from the equivalent circuit of Fig.
4(c).
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Fig. 6. Modulus of the reflection coefficient for a thick iris in a WR75
waveguide; s = 0.5 and the thickness of the iris is d =0.768 mm. The

continuous curve is obtained considering two basis functions and six

“accessible” modes; the dashed one is obtained using the equivalent
circuit.

d=0.768 mm inside a WR75 waveguide. The curves

reported in this figure are obtained by using N =2 and 6

accessible modes (P = 6, continuous line). The very good
approximation provided by the circuit of Fig. 4(c) is

evident.

With regard to the stub case, the resonant nature of the
two interacting discontinuities must be properly taken
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into account. To this end, it can be advantageous to
consider the resonant cell from directions other than the
propagating one. By doing so, excellent results can be
obtained. Fig. 7 compares the computed (dashed line) and
the measured (continuous line) modulus and phase of the
scattering parameters for the structure in the inset. Only
two basis functions have been used on the two apertures,
and only three accessible modes have been considered.
The excellent agreement between the computed results
and the experimental data is evident.

As a last example, Fig. 8 compares experimental and
calculated data for the three-stub structure shown in the
inset. The latter further confirms how it is possible to
obtain very accurate results with a modest numerical
effort.

VIII. CoNcLUSIONS

The problem of the E-plane step in rectangular wave-
guide has been reconsidered. The use of the appropriate
edge condition, combined with a variational expression of
the generalized scattering matrix, has led to a significant
reduction of the numerical effort. In fact, as is evident
also from a comparison with experimental data, inversion
of a matrix of maximum size 2X2 is required to obtain
the generalized scattering matrix.

Moreover, when the frequency extraction is used, new
approximate circuits with frequency-independent ele-
ments are derived. The method outlined in the previous
sections is therefore proposed as a valid improvement of
the classical modal-matching routines, as well as of the
equivalent circuits reported in [1].

AppPENDIX

The normalization of the Gegenbauer polynomials is
given in [7, p. 8271

[Ta-e) T e ce) de

-1
_ m27PT (20 + m)
C(m)!(m+v)T2(v) ™
~2N25,,.. (A1)

With the choice v =1/6, the normalization constant N,
appearing in (18) is then

1 172
n-1/6 wI‘(§+m)

N, =~ . (A2)
Z _ !
F(G) (m+ 6)(m)
Coefficients of the expression (22) are as follows:
d
Qo= [ Wi Fo Y
0
Jerds o1 cosnmst
= 5 Can (1) dt - (A3)

2‘I\Im -1 (1‘1‘2)
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Fig. 7. Experimental and computed scattering parameters for the structure in Fig. 7(a), referring to a WR75 loaded with
one E-plane stub. All dimensions are in mm,
where with
€,=1, n=0 1 172
al'l = +2m 172
=2, n>0 . 1\
C,=(—-1) ' 2m+ —
and s is the step ratio d /b. The above integral is recog- (2m)! 6

nized as the real part of the following standard integral
[7, p. 830}

+1 v=1/2 i
f~1(1—t2) e CE(t) dt

721 (20 + )
o plT(v)

Setting now « = nws and p = 2m in the above, we obtain

(N'a™T, (). (A4)

sz+1/6(’”"'s)

s n>0 (A5
ws)1/6 (AS)

Q,un(5) =V25C,,

For n =0, the limit of the Bessel function of small argu-

ment is
J,(2) 1

2 2°T(v)v’
Hence for v =2m +1/6, we have

lim

z—0

91/3 1412
O =Vs =7 3vr(§)] = V5N,
r —
&)
Qno=0, m>0 (A6)
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Fig. 8. Experimental and computed scattering parameters for the structure in Fig. 8(a) referring to a WR75 rectangular
waveguide loaded with three E-plane stubs. All dimensions are in mm.
Returning now to the expiession (20), its coefficients, From the expansion of the Bessel function for large

arguments,

d
-j;qunfméy | J(z2)= \/‘cos z—~————})

are obtained by setting x = nwr in A4; hence it is noted that, for large n, we have

| omr16(RT) Jom+1 6("773) 1
Pmn=\/gt;;——(r#_)1-/6—— (A7) (I117/'S)1/6 = ) \/i(nws) & COS'TT(I’IS"‘E)

which are s-independent. (A8)



1288

Hence series such as those appearing in (24) converge as
-7/3
n='",

ArpENDIX 11
SECOND-ORDER VARIATIONAL SOLUTION FOR
SINGLE STEP

It is noted that the Gegenbauer polynomial C, repre-
-sents exactly the field of the fundamental LSE,;, mode.
Consequently in Appendix I, Q,,, = 0 for m > 0. This fact
allows the second-order variational solution for the single
step also to be written down without matrix inversion. Let

Yo Y,
Y= [ 00 ‘o1
Yoo Yy

be the resulting 2 X2 matrix, and Z be its inverse. Then,
we have

-1
Zy= [Yoo - Y021 / Yn]
and, on account of (27),
Pgy

“‘—2’_-1
Yoo - Y01/Y11

Sy =
and similarly for the other elements of the two-port
scattering matrix. :
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